\begin{tabbing} val{-}axiom($E$;$V$;$M$;${\it info}$;${\it pred?}$; \\[0ex]${\it init}$;${\it Trans}$; \\[0ex]${\it Choose}$;${\it Send}$;${\it val}$;${\it time}$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=($\forall$$e$:$E$. \+ \\[0ex]($\uparrow$islocal(kind(${\it info}$;$e$))) \\[0ex]$\Rightarrow$ ($\exists$\=$x$:$\mathbb{N}$\+ \\[0ex](($\uparrow$isl(\=${\it Choose}$\+ \\[0ex](loc(${\it info}$;$e$) \\[0ex],act(kind(${\it info}$;$e$)) \\[0ex],$x$ \\[0ex],$\lambda$$x$.state\_when($e$;${\it info}$;${\it pred?}$;${\it init}$;${\it Trans}$;${\it val}$;${\it time}$)($x$,0)))) \-\\[0ex]c$\wedge$ (\=${\it val}$($e$)\+ \\[0ex]= \\[0ex]outl(\=${\it Choose}$\+ \\[0ex](loc(${\it info}$;$e$) \\[0ex],act(kind(${\it info}$;$e$)) \\[0ex],$x$ \\[0ex],$\lambda$$x$.state\_when($e$;${\it info}$;${\it pred?}$;${\it init}$;${\it Trans}$;${\it val}$;${\it time}$)($x$,0))) \-\\[0ex]$\in$ $V$(loc(${\it info}$;$e$),act(kind(${\it info}$;$e$))))))) \-\-\\[0ex]$\wedge$ \=($\forall$$e$:$E$. \+ \\[0ex]($\uparrow$isrcv(kind(${\it info}$;$e$))) \\[0ex]$\Rightarrow$ \=($<$lnk(kind(${\it info}$;$e$))\+ \\[0ex], tag(kind(${\it info}$;$e$)) \\[0ex], ${\it val}$($e$)$>$ $\in$ \=${\it Send}$\+ \\[0ex](loc(${\it info}$;sender(${\it info}$;$e$)) \\[0ex],kind(${\it info}$;sender(${\it info}$;$e$)) \\[0ex],${\it val}$(sender(${\it info}$;$e$)) \\[0ex],$\lambda$$x$.\=state\_when(sender(${\it info}$;$e$);${\it info}$;${\it pred?}$;${\it init}$;${\it Trans}$;${\it val}$;${\it time}$)\+ \\[0ex]($x$ \\[0ex],0)) $\in$ Msg($M$))) \-\-\-\-\- \end{tabbing}